
System Design

Elements of System Design
Software Architectures

Concurrency
Processor Allocation

Data Management Issues
Development Standards

Design Tradeoffs & Implementation Issues

Elements of System Design (1)

System architecture: overall structure, relationships
among its major components and their interactions

Software architecture: the structure of software elements
Architectural decision determine success in meeting non-
functional requirements
Poor architecture reduces reusability of designed and
existing components

Elements of System Design (2)

Activities
Identification of sub-systems and major components
Inherent concurrency
Allocation of sub-systems to processors
Data management strategy
HCI standards and strategy
Code development standards
Planning of control aspects
Test plans
Setting of priorities for design tradeoffs
Identification of implementation requirements

Software Architecture (1)

Description of sub-systems and components and the
relationships between them, typically specified in different
views to show relevant functional and non-functional
properties
Aspects of software architecture

Conceptual architecture: components and connectors
Module architecture: sub-systems, modules and exports, imports
Code architecture: files, directories, libraries and includes, contains
Execution architecture: tasks, threads, object interactions and uses,
calls

Logical versus physical architecture

Software Architecture (2)

Sub-systems group together elements of the system
that share some common properties

A coherent set of responsibilities
Advantages of sub-systems

Smaller units of deployment
Maximise reuse at the component level
Helps in copying with complexity
Improves maintainability
Aids portability

Software Architecture (3)

Clear boundary – interface
(encapsulation of internal
structure)

Remember the contracts in
contract-based design!
The goal is independence of
sub-systems – incremental
development and delivery
Localise changes

Sub-system
communication styles

Client/server easier to
implement and maintain –
less tighter coupling

The server sub-system does
not depend on the client sub-
system and is not affected by
changes to the client’s interface.

«client»

Sub-system A

«server»

Sub-system B

«peer»

Sub-system D

«peer»

Sub-system C

Each peer sub-system
depends on the other and
each is affected by changes
in the other’s interface.

Software Architecture (4)

Layering and partitioning
Layers – different levels of abstraction

Open versus closed
Partitions – different aspects of functionality
Usually combined

Closed architecture—
m essages m ay only be

sent to th e adja cent
lower layer.

O pen architec ture—
m essages can be sent

to any low er layer.

Layer 1
Layer 2

Layer N -1
Layer N

Layer 1
Layer 2

Layer N -1
Layer N

Software Architecture (5)

Issues for layered
architectures

Layer interface stability
Sharing of lower layers
between systems
Appropriate level of
granularity
Sub-division of complex
layers
Performance overhead of
closed layer architectures

Layer 7: Application

Provides miscellaneous protocols for common activities.

Layer 6: Presentation

Structures information and attaches semantics.

Layer 5: Session

Provides dialogue control and synchronization facilities.

Layer 4: Transport

Breaks messages into packets and ensures delivery.

Layer 3: Network

Selects a route from sender to receiver.

Layer 2: Data Link

Detects and corrects errors in bit sequences.

Layer 1: Physical

Transmits bits: sets transmission rate (baud), bit-code,
connection, etc.

Software Architecture (5)

Issues for layered
architectures

Layer interface stability
Sharing of lower layers
between systems
Appropriate level of
granularity
Sub-division of complex
layers
Performance overhead of
closed layer architectures

Data management library classes

Data formatting

Application

Software Architecture (6)

Process for layered architecture development
Define criteria for grouping application functionality into
layers
Determine number of layers
Name layers and assign functionality to them
Refine the produced structure
Specify the interface of each layer
Specify the structure of each layer – partitioning?
Specify the communication between layers
Reduce coupling between layers – strong encapsulation

Software Architecture (7)

Database

Business logic

Presentation

Database

Domain

Application logic

Presentation Boundary classes
Control classes
Entity classes

Layers versus Tiers
Logical versus Physical
division

Software Architecture (8)

Partitioning – different aspects of
functionality

Campaign Database

Campaign Domain

Advert
 Sub-system

Advert HCI
 Sub-system

Campaign Costs
Sub-system

Campaign Costs
HCI Sub-system

A single domain
layer supports
two application
sub-systems.

Application layer

Presentation layer

Software Architecture (9)

Campaign
Forecasting

Advert
Development

Campaign
Management

Campaign and Advert Database Access

Each sub-system
contains some core

functionality
Changes to data in one sub-

system need to be propogated
to the others

Software Architecture (10)

The propagation mechanism

«access» «access»

View A

Controller A Controller B

View B

Model

«access»

«access»

«access»

«access»

«propagate»«propagate»

Software Architecture (11)

«component»

«component»
AdvertController

initialize()
changeAdvert()
update()

«component»
CampaignModel

coreData
setOfObservers [0..*]
attach(Observer)
detach(Observer)
notify()
getAdvertData()
modifyAdvert()

AdvertView

viewData

initialize()
displayAdvert()
update()

depends on *

1

1

updates *

updates

1

1

Navigability arrows show the
directions in which messages

will be sent..

Software Architecture (12)

displayAdvert()

:AdvertView:CampaignModel

changeAdvert()

modifyAdvert()

getAdvertData()

update()

notify()

:AdvertController

update()
getAdvertData()

Software Architecture (13)

Client A

Client B

Broker

Server 3

Server 2

Server 1

Software Architecture (14)
:C lie n t :S e rve r S ide

Pr o xy :S e rve r

P o s s i b l e
p r o c e s s

b o u n da r i e s

:C lie n tS id e
Pr o xy :B r o ke r

c a llS erv er ()

s e nd Re q ue s t()
p a c kDa ta ()

s e nd Re q ue s t() f in d Se rve r()

r e qu es tS erv ice ()

s erv ice ()

s e nd Re s po ns e()

p a c kDa ta ()

u n Pa c kDa ta ()

u n Pa c kDa ta ()

s e nd Re s po ns e()

Software Architecture (15)

Sub-system

A

Broker

Sub-system

D

Sub-system

C

Sub-system

B

Broker

Bridge

Bridge

Possible process boundary

Software Architecture (16)

Conway’s law for organisation structure and
architecture

Development teams need to be aligned with
architecture sub-systems
Division and coalescence of teams or sub-
systems
Interfaces are critical

Concurrency (1)

Logical versus physical concurrency
Multiple or single processors
Multi-user DBMS, Multitasking OS, multi-threading
language

Identifying need for concurrency
Use cases – simultaneous response to different events
triggering different execution threads
Statecharts – concurrent sub-states in complex nested
states
Sequence diagrams – simultaneous activation (method
execution) for different objects

Concurrency (2)

Concurrency (3)

Simultaneous
execution

Do not execute
simultaneously

:ClassA :ClassB

Asynchronous
messages

:ClassC :ClassD

Concurrency (4)

Interrupts generated in scheduler.

«invoke»

I/O Sub-system
A

I/O Sub-system
B

Sub-system 2

Scheduler

Sub-system 1
This thread of

execution generates a
system output.

Thread of control
invoked by
scheduler and
produces no output.

«invokes»

«interrupt» «interrupt»

Processor Allocation

Divide application into subsystems
Estimate processing requirements for each
subsystem
Determine access criteria and location requirements
Identify concurrency requirements for the
subsystems
Allocate each subsystem to an operating platform
Determine communication requirements between
subsystems
Specify communication infrastructure

Data Management Issues

Files versus DBMS
Simple data management and fast access, but
complex data storage and retrieval code versus
heavyweight system with a lot of additional
functionality
What kind of DBMS?

Relational, Object-Oriented, Object-Relational

Additional Considerations

Development Standards
HCI guidelines

Good dialogue design and
standardised “look and feel”

I/O device guidelines
Standard interaction
interface, encapsulation
access
Take advantage of
polymorphism

Construction guidelines
Naming conventions, use of
particular software features
Consistency is paramount!

Prioritising design
tradeoffs

Aim consistency of designs
at different stages
Guidelines agreed with
clients
There are always
unanticipated cases!

Design for implementation
System initialisation issues,
data conversion
Particular care is need to
maintain the integrity of the
data

