System Design

Elements of System Design
Software Architectures
Concurrency
Processor Allocation
Data Management Issues
Development Standards

Design Tradeoffs & Implementation Issues

Elements of System Design (1)

¢ System architecture: overall structure, relationships
among 1ts major components and their interactions
» Software architecture: the structure of software elements

= Architectural decision determine success in meeting non-
functional requirements

= Poor architecture reduces reusability of designed and
existing components

Elements of System Design (2)

* Activities
= [dentification of sub-systems and major components
= Inherent concurrency
= Allocation of sub-systems to processors
= Data management strategy
s HCI standards and strategy
s Code development standards
= Planning of control aspects
s Test plans
= Setting of priorities for design tradeoffs
= [dentification of implementation requirements

Software Architecture (1)

¢ Description of sub-systems and components and the
relationships between them, typically specified in different
views to show relevant functional and non-functional
properties
¢ Aspects of software architecture
s Conceptual architecture: components and connectors
s Module architecture: sub-systems, modules and exports, imports
s Code architecture: files, directories, libraries and includes, contains
= Execution architecture: tasks, threads, object interactions and uses,
calls

¢ Logical versus physical architecture

Software Architecture (2)

¢ Sub-systems group together elements of the system
that share some common properties

= A coherent set of responsibilities

¢ Advantages of sub-systems
= Smaller units of deployment
= Maximise reuse at the component level
= Helps in copying with complexity
s Improves maintainability
= Aids portability

Software Architecture (3)

:]
¢ (lear boundary — interface .
i] «client» «peer»
(encapsulation of internal
stru Cture) Sub-system A Sub-system C
= Remember the contracts in /\
contract-based design!
= The goal is independence of
sub-systems — incremental V/ VAN
development and delivery «server» «peer
s Localise changes Sub-system B Sub-system D
¢ Sub-system
. . The server sub-system does Each peer sub-system
communication Styles not depend on the client sub- depends on the other and

system and is not affected by each is affected by changes

= Client/server easier to
changes to the client’s interface. in the other’s interface.

implement and maintain —
less tighter coupling

Software Architecture (4)

¢ Layering and partitioning
= Layers — different levels of abstraction
e Open versus closed

» Partitions — different aspects of functionality
= Usually combined

| Layer N _¢ Layer N
Layer N -1 Layer N -1
| : : :
| I :] : !
Layer2¢v Layer2 | V¥
Layer 1 V Layer1V¥
Closed architecture— Open architecture—
messages may only be messages can be sent
sent to the adjacent to any low er layer.

lower layer.

Software Architecture (5)

Layer 7: Application

Provides miscellaneous protocols for common activities.

Layer 6: Presentation

Structures information and attaches semantics.

Layer 5: Session

Provides dialogue control and synchronization facilities.

Layer 4: Transport

Breaks messages into packets and ensures delivery.

Layer 3: Network

Selects a route from sender to receiver.

Layer 2: Data Link

Detects and corrects errors in bit sequences.

Layer 1: Physical

Transmits bits: sets transmission rate (baud), bit-code,
connection, etc.

¢ Issues for layered
architectures

Layer interface stability

Sharing of lower layers
between systems

Appropriate level of
granularity

Sub-division of complex
layers

Performance overhead of
closed layer architectures

Software Architecture (5)

Application

Data formatting

Data management library classes

¢ [ssues for layered
architectures

Layer interface stability

Sharing of lower layers
between systems

Appropriate level of
granularity

Sub-division of complex
layers

Performance overhead of
closed layer architectures

Software Architecture (6)

¢ Process for layered architecture development

s Define criteria for grouping application functionality into
layers

= Determine number of layers

= Name layers and assign functionality to them

= Refine the produced structure

= Specify the interface of each layer

s Specify the structure of each layer — partitioning?

= Specify the communication between layers

= Reduce coupling between layers — strong encapsulation

Software Architecture (7)

Presentation

Business logic

Database

Presentation

Application logic

Domain

Database

Layers versus Tiers
Logical versus Physical
division

Boundary classes
Control classes

Entity classes

Software Architecture (8)

¢ Partitioning — different aspects of
functionality

Advert HCI Campaign Costs
Presentation layer Sub-system HCI Sub-system
Advert Campaign Costs
Application layer Sub-system Sub-system
Campaign Domain «--_|__ Asingle domain
layer supports
Campaign Database two application
sub-systems.

Software Architecture (9)

Each sub-system

contains some core Changes to data in one sub-
functionality system need to be propogated
v~
RN 7 to the others
A ~\~ ’/ /
\ \\ - /

N S rd

s /

D N i

Campaign Advert Campaign
Forecasting |Development|Management

Campaign and Advert Database Access

Software Architecture (10)

] The propagation mechanism]
K t A
. «propagate» .
View A < pp 9 «propag?—t_e—_»_ ________ > View B

/E\) \‘\‘\~‘ \\\ //, ———————— /E\

E «acCessS» == Y L--"Kaccessy !

| | «access»
«access» Model !

| «access» - _ «accessy

W/ T T \/

Controller A Controller B

Software Architecture (11)

«component»
AdvertView
- depends on " |viewData
o initialize()
PP - Navigability arrows show the nl
! « directions in which messages d'SCE)I?yAdvert()
«component» will be sent. update()
CampaignModel
coreData 1 A
setOfObservers [0..*]
attach(Observer) updates
detach(Observer) !
notify()
modifyAdvert() AdvertController
1 .
~4_updates initialize()
changeAdvert()
update()

Software Architecture (12)

% :AdvertController :CampaignModel :AdvertView

5 ' i

changeAdyert() |

. :

maodifyAdvert() notify() E

|

update() i
| displayAdvert()

I:]4 getAdvertData() < |
update() ‘JJ

getAdvertData() >

Software Architecture (13)

Client A

/ Server 1

Server 3

/I Broker Server 2
ClientB

Software Architecture (14)

Client ClientSide :Broker :ServerSide :Server
= Proxy Proxy
T T :

callServer()

2

endReques

ackData()

|—Js\endR quest() findServer()
unPackData()

: requestSeryvfice()
I_]\ service()
<& —
; pkckData()
sendResponsSe()

ndRespgnse()

n/PAkData()
SO <

1/

1
1
1
\

~ Possible
process
boundaries

1
ek —————

Software Architecture (15)

Sub-system
A S

Broker £—>

Sub-system
C

Bridge Bridge

Sub-system < |

B

Broker

Possible process boundary

L

Sub-system
D

Software Architecture (16)

¢ Conway’s law for organisation structure and
architecture

s Development teams need to be aligned with
architecture sub-systems

s Division and coalescence of teams or sub-
systems

s Interfaces are critical

Concurrency (1)

¢ [ogical versus physical concurrency
= Multiple or single processors
s Multi-user DBMS, Multitasking OS, multi-threading
language
¢ [dentifying need for concurrency

= Use cases — simultaneous response to different events
triggering different execution threads

» Statecharts — concurrent sub-states in complex nested
states

= Sequence diagrams — simultaneous activation (method
execution) for different objects

Concurrency (2)

ﬁtive

Running
Advert ~] advertsApproved|)
. » Freparation J ¢
) Scheduling
extendCampaign()

Running
Adverts confirmSchedule()
campsignCanplted), @)

Meonitoring

.—’(Survey)
runSurvey| ﬁ }‘—_| surveyComplete()

\ [Evaluation

Concurrency (3)

:ClassD

:ClassC

:ClassB

messages

:ClassA

Simultaneous
execution

Concurrency (4)

This thread of ~ ____| __)Sub-syst§m 2
Sub-system 1 execution generates a —
N System output.
N A
A Z
Thread of control " «invoke «invokes» .- -
invokedby T . L
scheduler and
produces no output. Y
«interrupt» ____------- >t Scheduler <------__«interrupt»

Interrupts generated in scheduler.
I/O Sub-system P E I/O Sub-system

A B

Processor Allocation

¢ Divide application into subsystems

¢ Estimate processing requirements for each
subsystem

¢ Determine access criteria and location requirements

¢ [dentify concurrency requirements for the
subsystems

¢ Allocate each subsystem to an operating platform

¢ Determine communication requirements between
subsystems

¢ Specify communication infrastructure

Data Management Issues

¢ Files versus DBMS

s Simple data management and fast access, but
complex data storage and retrieval code versus
heavyweight system with a lot of additional
functionality

= What kind of DBMS?
e Relational, Object-Oriented, Object-Relational

Additional Considerations

¢ Development Standards ¢ Prioritising design
= HCI guidelines tradeoffs
e Good dialogue design and = Aim consistency of designs
standardised “look and feel” at different stages
= /O device guidelines = Guidelines agreed with
e Standard interaction clients
interface, encapsulation = There are always
access .
unanticipated cases!
e Take advantage of .] .
polymorphism * Design for implementation
= Construction guidelines = System initialisation issues,
e Naming conventions, use of data conversion
particular software features s Particular care is need to
e Consistency is paramount! maintain the integrity of the

data

